61 research outputs found

    Pancreatic islet transcriptional enhancers and diabetes

    Get PDF
    Purpose of Review: Common genetic variants that associate with type 2 diabetes risk are markedly enriched in pancreatic islet transcriptional enhancers. This review discusses current advances in the annotation of islet enhancer variants and their target genes. Recent Findings: Recent methodological advances now allow genetic and functional mapping of diabetes causal variants at unprecedented resolution. Mapping of enhancer-promoter interactions in human islets has provided a unique appreciation of the complexity of islet gene regulatory processes and, enabled direct association of noncoding diabetes risk variants to their target genes. Summary: The recently improved human islet enhancer annotations constitute a framework for the interpretation of diabetes genetic signals in the context of pancreatic islet gene regulation. In the future, integration of existing and yet to come regulatory maps with genetic fine-mapping efforts and in-depth functional characterization will foster the discovery of novel diabetes molecular risk mechanisms

    PTGIS (prostaglandin I2 (prostacyclin) synthase)

    Get PDF
    Review on PTGIS (prostaglandin I2 (prostacyclin) synthase), with data on DNA, on the protein encoded, and where the gene is implicated

    Liver sinusoidal endothelial transcription factors in metabolic homeostasis and disease.

    Get PDF
    Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells that form the liver microvasculature. LSECs maintain liver homeostasis, scavenging bloodborne molecules, regulating immune response, and actively promoting hepatic stellate cell quiescence. These diverse functions are underpinned by a suite of unique phenotypical attributes distinct from other blood vessels. In recent years, studies have begun to reveal the specific contributions of LSECs to liver metabolic homeostasis and how LSEC dysfunction associates with disease aetiology. This has been particularly evident in the context of non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of metabolic syndrome, which is associated with loss of key LSEC phenotypical characteristics and molecular identity. Comparative transcriptome studies of LSECs and other endothelial cells, together with rodent knockout models, have revealed that loss of LSEC identity through disruption of core transcription factor activity leads to impaired metabolic homeostasis and to hallmarks of liver disease. This review explores the current knowledge of LSEC transcription factors, covering their roles in LSEC development and maintenance of key phenotypic features, which, when disturbed, lead to loss of liver metabolic homeostasis and promote features of chronic liver diseases, such as non-alcoholic liver disease

    Regulatory de novo mutations underlying intellectual disability

    Get PDF
    The genetic aetiology of a major fraction of patients with intellectual disability (ID) remains unknown. De novo mutations (DNMs) in protein-coding genes explain up to 40% of cases, but the potential role of regulatory DNMs is still poorly understood. We sequenced 63 whole genomes from 21 ID probands and their unaffected parents. In addition, we analysed 30 previously sequenced genomes from exome-negative ID probands. We found that regulatory DNMs were selectively enriched in fetal brain-specific enhancers as compared with adult brain enhancers. DNM-containing enhancers were associated with genes that show preferential expression in the prefrontal cortex. Furthermore, we identified recurrently mutated enhancer clusters that regulate genes involved in nervous system development (CSMD1, OLFM1, and POU3F3). Most of the DNMs from ID probands showed allele-specific enhancer activity when tested using luciferase assay. Using CRISPR-mediated mutation and editing of epigenomic marks, we show that DNMs at regulatory elements affect the expression of putative target genes. Our results, therefore, provide new evidence to indicate that DNMs in fetal brain-specific enhancers play an essential role in the aetiology of ID

    Dysregulated RNA polyadenylation contributes to metabolic impairment in non-alcoholic fatty liver disease

    Get PDF
    Pre-mRNA processing is an essential mechanism for the generation of mature mRNA and the regulation of gene expression in eukaryotic cells. While defects in pre-mRNA processing have been implicated in a number of diseases their involvement in metabolic pathologies is still unclear. Here, we show that both alternative splicing and alternative polyadenylation, two major steps in pre-mRNA processing, are significantly altered in non-alcoholic fatty liver disease (NAFLD). Moreover, we find that Serine and Arginine Rich Splicing Factor 10 (SRSF10) binding is enriched adjacent to consensus polyadenylation motifs and its expression is significantly decreased in NAFLD, suggesting a role mediating pre-mRNA dysregulation in this condition. Consistently, inactivation of SRSF10 in mouse and human hepatocytes in vitro, and in mouse liver in vivo, was found to dysregulate polyadenylation of key metabolic genes such as peroxisome proliferator-activated receptor alpha (PPARA) and exacerbate diet-induced metabolic dysfunction. Collectively our work implicates dysregulated pre-mRNA polyadenylation in obesity-induced liver disease and uncovers a novel role for SRSF10 in this process

    Blood DNA methylation profiling identifies cathepsin Z dysregulation in pulmonary arterial hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is characterised by pulmonary vascular remodelling causing premature death from right heart failure. Established DNA variants influence PAH risk, but susceptibility from epigenetic changes is unknown. We addressed this through epigenome-wide association study (EWAS), testing 865,848 CpG sites for association with PAH in 429 individuals with PAH and 1226 controls. Three loci, at Cathepsin Z (CTSZ, cg04917472), Conserved oligomeric Golgi complex 6 (COG6, cg27396197), and Zinc Finger Protein 678 (ZNF678, cg03144189), reached epigenome-wide significance (p < 10−7) and are hypermethylated in PAH, including in individuals with PAH at 1-year follow-up. Of 16 established PAH genes, only cg10976975 in BMP10 shows hypermethylation in PAH. Hypermethylation at CTSZ is associated with decreased blood cathepsin Z mRNA levels. Knockdown of CTSZ expression in human pulmonary artery endothelial cells increases caspase-3/7 activity (p < 10−4). DNA methylation profiles are altered in PAH, exemplified by the pulmonary endothelial function modifier CTSZ, encoding protease cathepsin Z

    Liver RBFOX2 regulates cholesterol homeostasis via Scarb1 alternative splicing in mice

    Get PDF
    RNA alternative splicing (AS) expands the regulatory potential of eukaryotic genomes. The mechanisms regulating liver-specific AS profiles and their contribution to liver function are poorly understood. Here, we identify a key role for the splicing factor RNA-binding Fox protein 2 (RBFOX2) in maintaining cholesterol homeostasis in a lipogenic environment in the liver. Using enhanced individual-nucleotide-resolution ultra-violet cross-linking and immunoprecipitation, we identify physiologically relevant targets of RBFOX2 in mouse liver, including the scavenger receptor class B type I (Scarb1). RBFOX2 function is decreased in the liver in diet-induced obesity, causing a Scarb1 isoform switch and alteration of hepatocyte lipid homeostasis. Our findings demonstrate that specific AS programmes actively maintain liver physiology, and underlie the lipotoxic effects of obesogenic diets when dysregulated. Splice-switching oligonucleotides targeting this network alleviate obesity-induced inflammation in the liver and promote an anti-atherogenic lipoprotein profile in the blood, underscoring the potential of isoform-specific RNA therapeutics for treating metabolism-associated diseases

    SOX9 regulated matrix proteins are increased in patients serum and correlate with severity of liver fibrosis

    Get PDF
    Extracellular matrix (ECM) deposition and resultant scar play a major role in the pathogenesis and progression of liver fibrosis. Identifying core regulators of ECM deposition may lead to urgently needed diagnostic and therapetic strategies for the disease. The transcription factor Sex determining region Y box 9 (SOX9) is actively involved in scar formation and its prevalence in patients with liver fibrosis predicts progression. In this study, transcriptomic approaches of Sox9-abrogated myofibroblasts identified >30% of genes regulated by SOX9 relate to the ECM. Further scrutiny of these data identified a panel of highly expressed ECM proteins, including Osteopontin (OPN), Osteoactivin (GPNMB), Fibronectin (FN1), Osteonectin (SPARC) and Vimentin (VIM) as SOX9 targets amenable to assay in patient serum. In vivo all SOX-regulated targets were increased in human disease and mouse models of fibrosis and decreased following Sox9-loss in mice with parenchymal and biliary fibrosis. In patient serum samples, SOX9-regulated ECM proteins were altered in response to fibrosis severity, whereas comparison with established clinical biomarkers demonstrated superiority for OPN and VIM at detecting early stages of fibrosis. These data support SOX9 in the mechanisms underlying fibrosis and highlight SOX9 and its downstream targets as new measures to stratify patients with liver fibrosis
    • …
    corecore